Высокодетальное распределение NO2 в тропосфере урбанизированных районов по данным гиперспектральной аппаратуры КА Ресурс-П: алгоритм, результаты измерений, валидация с помощью моделей и измерений, оценка выбросов

Постыляков О.В.¹, Боровский А.Н.¹, Шукуров К.А.¹, Макаренков А.А.², Давыдова М.А.³¹, Мухартова Ю.В.³¹

¹ Институт физики атмосферы им. А.М. Обухова РАН ² Рязанский государственный радиотехнический университет ³ Московский государственный университет им. М.В. Ломоносова

oleg.postylyakov@gmail.com

NOx in troposphere

 $NO + O_{3} \rightarrow NO_{2} + O_{2}$ $NO + VOC \rightarrow NO_{2} + O_{2} + VOC$ $NO + FR \rightarrow NO_{2} + O_{2} + FR$ $NO_{2} + hv \rightarrow NO + O$ $O_{2} + O + M \rightarrow O_{3} + M$

VOC – volatile organic compound; FR – free radical

Chemically important gas

- ozone generation
- Indicator of VOCs and free radicals;

Contribute to radiation balance;

•Impact on ecosystems (degradation of flora and fauna, respiratory illnesses, mutations).

NO2 satellite instruments

Satellite	Launch date	NO2 resolution
OMI/Aura	Jul 2004	13x24 km
GOME-2/MetOp-A	Oct 2006	40x80 km
GOME-2/MetOp-B	Sep 2012	40x80 km
TROPOMI/Sentinel-5P	Oct 2017	3.5x7 km
Resurs P (№1), (№2), (№3)	Jun 2013 Currently not operated	(2.4x2.4 km, typical NO2 VCD accuracy of 1e15 mol/cm2)
Resurs P №4, №5	2023-24?	0.12x0.12 km grid

Resurs P №4, №5

Goal of the research

Retrieval of distribution of NO₂ in the troposphere over urban areas with better spatial resolution than currently operated satellite instruments

The satellite is designed for multi-spectral remote sensing of the Earth's surface aimed at acquiring high-quality visible images in near real-time as well as on-line data delivery via radio link and providing a wide range of consumers with value-added processed data. **Resurs-P** is a series of Russian Earthobserving satellites capable of acquiring high-resolution imagery (max 30 m) in hyper-spectral mode

GSA instrument

Satellite	Launch date
Resurs-P №1	25.06.2013(not operate now)
Resurs-P №2	26.12.2014 (not operate now)
Resurs-P №3	13.03.2016 (not operate now)
Resurs-P №4	2023?
Resurs-P №5	

GSA/Resurs-P instrument characteristics

Other possible frame sizes

30 km x 600 km

60 km x 300 km

Location for the first experiment

/ 24

Basics of method of NO₂ retrieval

DOAS technique $I(\lambda_k) = I_0(\lambda_k) \cdot \exp\left(-\sum_{i} \sigma_i(\lambda_k) \cdot S_i\right)$ $S_{i}: \sum_{k} \left(ln \left(\frac{I_{0}(\lambda_{k})}{I(\lambda_{k})} \right) - \sum_{i} \sigma_{i}(\lambda_{k}) \cdot S_{i} \right)^{2} \rightarrow min$ 400 420 440 460 Abs. cross-section, rel.units 400 420 440 460 $I(\lambda_k)$ - measured spectrum; $I_0(\lambda_k)$ - reference spectrum; $\sigma_i(\lambda_k)$ - absorption cross-section; 420 440 400 460 S_i - slant column density (SCD). 03 400 420 440 460

$$\boldsymbol{V} = \boldsymbol{S} \cdot \boldsymbol{F}$$
 $F = \frac{1}{\int_{h_0}^{h_1} a(h)n(h)dh}$

a(h) - weight coefficient of contribution for each atmospheric layer to the slant column (layer air mass factor (AMF)). It is calculated using a linearized RT model (for example MCC++).

- V vertical column density (VCD);
- S slant column density (SCD);
- F scaling factor

instrument function.

Retrieval errors of tropospheric NO₂ slant column

Error of single DSCD measurement (120x120m): 50*10^15 mol*cm^-2 Error for DSCD for averaged 400 pixels (2.4x2.4 km): 2.5*10^15 mol*cm^-2

Error for VCD for averaged 400 pixels (2.4x2.4 km): (0.7-1.0)*10^15 mol*cm^-2 (for typical AMF=2.5-3.5)

Typical stratospheric VCD: 3...5*10^15 mol*cm^-2 Tropospheric VCD: 0...20...50...*10^15 mol*cm^-2

First NO2 maps with high spatial resolution

Observations of GSA/Resurs P №2 September 29, 2016, 4:30UTC

March 22, 2017

Resurs P №2: Resolution 2.4 km, grid step 120 m, Slant column

First NO2 map with high spatial resolution

Observations of GSA/Resurs P №2 taken on September 29, 2016, 4:30UTC

Validation of GSA/Resurs-P:

- Comparison with low-resolution data of other satellite (alternative highresolution data don't exist).
- Comparison with high-resolution data of chemical-transport models.

Resurs P №2: plumes and sources are identified Resolution 2.4 km, grid step 120 m

OMI: NO2 plumes and their source are hidden Resolution 13kmx24km

11

24

Comparison of NO2 DSCD data obtained by GSA and OMI

Fit Results

high+middle Fit Equation Y = 0.5743238799 * X + 15.44307588 Number of data points used = 17 Average X = 14.8577 Average Y = 23.9762 Residual sum of squares = 470.723 Regression sum of squares = 1318.73 Coef of determination, R-squared = 0.736946 Residual mean square, sigma-hat-sq'd = 31.3816

Fit Results

highFit Equation Y = 0.8001855961 * X + 16.14828444 Number of data points used = 6 Average X = 8.55239 Average Y = 22.9918 Residual sum of squares = 25.2808 Regression sum of squares = 205.839 Coef of determination, R-squared = 0.890616 Residual mean square, sigma-hat-sq'd = 6.32019

Comparison of NO2 DSCD data obtained by GSA and OMI (in 10¹⁶ molec×cm⁻²). Color of circle corresponds to the percentage of the coverage OMI pixel by GSA data. Red regression line corresponds to coverage of more than 70%, blue one – more than 30%.

First NO2 map with high spatial resolution

14 24

Observations of GSA/Resurs P №2 taken on September 29, 2016, 4:30UTC

Validation of GSA/Resurs-P:

- Comparison with low-resolution data of other satellite (alternative highresolution data don't exist).
- Comparison with high-resolution data of chemical-transport models.

Resurs P №2: plumes and sources are identified Resolution 2.4 km, grid step 120 m

HYSPLIT dispersion model

NO2 source #2 in GSA NO2 map

Figure 1. a) NO2 DSCD at 4:30UTC on September 29, 2016 retrieved by GSA algorithm. An arrow shows a square of a highly probable location of a source of NO2 pollution. b) The square from a) on an enlarged scale - some chemical industrial enterprise using coal, a possible source of the detected NO2 pollution. Maps of Google Earth for 12/2016 are used.

Simulation of plume #2 with numerical chemical transport model

a) The observed by GSA/Resurs-P plume #2, VCD obtained for geometrical AMF=3;
b) The result of the transport simulation of the plume #. Run using HYSPLIT
Downloadable Public Version with quarter-degree meteorological data archive of NCEP
Global Forecast System (GFS)

16 24

Simulation of plume #2 with numerical-asymptotic chemical transport model

Figure 2. Measured (left) and simulated NO2 VCD (right) (Hebei Province, PRC September 29, 2016)

Based on the numerical-asymptotic approach, which take into account NO2 content in "the near-field zone" the estimate of NO2 emissions is about 100 kg/h

NO2 VCD obtained by GSA over Tokyo

ColumnAmountNO2Trop (cm^-2)					
0.0E+00	8.0E+15	1,6É+16	2.4É+16	3,2E+16	

NO2 VCD obtained by GSA over Tokyo

19 24

March 22, 2017:

Low NO2 content. The highest NO2 content is observed east of Tokyo over the bay.

April 4, 2017:

Significant NO2 content. The highest NO2 content is observed over Tokyo.

22.03.2017

04.04.2017

NO2 VCD obtained by GSA over Tokyo

March 22, 2017:

Low NO2 content. The highest NO2 content is observed east of Tokyo over the bay. Northwest wind of 8 m/s was observed in Tokyo with gusts up to 15 m/s; this weather contributes to the dispersion of impurities.

April 4, 2017:

Significant NO2 content. The highest NO2 content is observed over Tokyo. North-North-East wind of 1 m/s was observed; a quiet wind leads to a small dispersion of pollution.

22.03.2017

04.04.2017

Comparison of NO2 VCD obtained by GSA and TROPOMI

OMI/Aura 04.04.2017

GSA/Resurs-P Nº2 04.04.2017

<u>23</u> 24

- Пространственное разрешение измерений NO2 ГСА/Ресурс-П №2 и №3 составляет около 2,4 км с шагом сетки 120 м и превышает разрешение других спутниковых приборов.
- В целом измерения тропосферного NO2 по GSA/Pecypc-П согласуются с измерениями OMI и TROPOMI, но превосходят их по разрешающей способности.
- Использование прибора ГСА/Ресурс-П позволяет исследовать тонкую структуру распределения NO2.
- Выполнены первые оценки мощности излучения локального источника по спутниковым измерениям (с привлечение химически-транспортных моделей соответствующего разрешения).
- Целесообразно использовать приборы Ресурс-П №4 и №5 в сочетании с TROPOMI или OMI для улучшения разрешения получаемого поля NO2 в выбранных местах.

СПАСИБО ЗА ВНИМАНИЕ!

THE WORK WAS SUPPORTED BY RUSSIAN FOUNDATION FOR BASIC RESEARCHES WITH GRANTS 20-05-00826